¡¾×ª¡¿PythonʵÏÖµÄHMMÀà
#!/usr/bin/env python """
HMM module This module implements simple Hidden Markov Model class. It follows the description in
Chapter 6 of Jurafsky and Martin (2008) fairly closely, with one exception: in this
implementation, we assume that all states are initial states. @author: Rob Malouf
@organization: Dept. of Linguistics, San Diego State University
@contact: rmalouf@mail.sdsu.edu
@version: 2
@since: 24-March-2008
""" from copy import copy class HMM(object): """
Class for Hidden Markov Models
An HMM is a weighted FSA which consists of: - a set of states (0...C{self.states})
- an output alphabet (C{self.alphabet})
- a table of state transition probabilities (C{self.A})
- a table of symbol emission probabilities (C{self.B})
- a list of initial probabilies (C{self.initial}) We assume that the HMM is complete, and that all states are both initial and final
states.
"""
def __init__(self,states,alphabet,A,B,initial):
"""
Create a new FSA object
@param states: states
@type states: C{list}
@param alphabet: output alphabet
@type finals: C{list}
@param A: transition probabilities
Ïà¹ØÎĵµ£º
µ±½ñÓÐÐí¶àÃâ·ÑµÄ RDBMS£¨Relational Database Management
System£¬¹ØÏµÊý¾Ý¿â¹ÜÀíϵͳ£©£¬ÆäÖÐһЩÊÇ¿ª·ÅÔ´ÂëÈí¼þ£¬ÁíһЩÊÇÉÌÒµ³§ÉÌÌṩµÄÃâ·Ñ²úÆ·¡£Èç¹ûÄúÕýÔÚʹÓà C/C++¡¢Java™¡¢.NET
»ò PHP
¿ª·¢Ó¦ÓóÌÐò£¬ÏëѰÕÒÒ»ÖÖ¿É¿¿µÄÊý¾Ý·þÎñÆ÷£¬Ï£ÍûËüÖ§³ÖÏȽøµÄ¼¼Êõ¡¢¾ßÓв»¶ÏÀ©´óµÄ¿ª·¢ÈËÔ±ÉçÇø²¢ÒѾ²¿ÊðÔÚÐí¶à¹Ø¼ ......
PythonÖеÄÎļþ²Ù×÷ÒÔ¼°ÊäÈëÊä³ö
ÎÒÃÇ¿ÉÒÔ·Ö±ðʹÓÃraw_inputºÍprintÓï¾äÀ´Íê³ÉÕâЩ¹¦ÄÜ¡£¶ÔÓÚÊä³ö£¬ÄãÒ²¿ÉÒÔʹÓöàÖÖ¶àÑùµÄstr£¨×Ö·û´®£©Àà¡£ÀýÈ磬ÄãÄܹ»Ê¹ÓÃrjust·½·¨À´µÃµ½Ò»¸ö°´Ò»¶¨¿í¶ÈÓÒ¶ÔÆëµÄ×Ö·û´®¡£ÀûÓÃhelp(str)»ñµÃ¸ü¶àÏêÇé¡£
ÁíÒ»¸ö³£ÓõÄÊäÈë/Êä³öÀàÐÍÊÇ´¦ÀíÎļþ¡£´´½¨¡¢¶ÁºÍдÎļþµÄÄÜÁ¦ÊÇ ......
PythonÖеÄÒì³£
µ±ÄãµÄ³ÌÐòÖгöÏÖijЩÒì³£µÄ×´¿öµÄʱºò£¬Òì³£¾Í·¢ÉúÁË¡£
Ò».´¦ÀíÒì³£
ÎÒÃÇ¿ÉÒÔʹÓÃtry..exceptÓï¾äÀ´´¦ÀíÒì³£¡£ÎÒÃǰÑͨ³£µÄÓï¾ä·ÅÔÚtry-¿éÖУ¬¶ø°ÑÎÒÃǵĴíÎó´¦ÀíÓï¾ä·ÅÔÚexcept-¿éÖС£
ÀýÈç:
#!/usr/bin/python
# Filename: try_except.py
import sys
try:
s = raw_input('E ......