关键字: 底层数据 名词解释: 补码:1 在计算机系统中,数值一律有补码来表示(存储). 使用补码,可以将符号位和其他位统一处理;同时,减法也可按加法来处理.另外,两个用补码表示的数据相加时候,如果最高位(符号位)有进位,则进违被舍弃. 2 补码与原码的转换过程几乎是相同的 数值的补码表示也分两种情况: (1)正数的补码:与原码相同. 例如,+9的补码是00001001 (2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1 例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码 0000111按位取反为1111000;再加1,所以-7的补码是11111001. 已知一个数的补码,求原码的操作分两种情况: (1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码. (2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取 反,然后再整个数加1. 例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111. 在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”.我在这里稍微介绍一下“模” 的概念: “模”是指一个计量系统的计数范围.如时钟等.计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”.例如: 时钟的计量范围是0~11,模=12. 表示n位的计算机计量范围是0~2(n)-1,模=2(n).【注:n表示指数】 “模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的 余数.任何有模的计量器,均可化减法为加法运算. 例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法: 一种是倒拨4小时,即:10-4=6 另一种是顺拨8小时:10+8=12+6=6 在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替. 对“模”而言,8和4互为补数.实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特 性.共同的特点是两者相加等于模. 对于计算机,其概念和方法完全一样.n位计算机,设n=8, 所能表示的最大数是11111111,若再 加1称为100000000(9位),但因只有8位,最高位1自然丢失.又回了00000000,所以
一个软件设计的好坏,我想很大程度上取决于它的整体架构,而这个整体架构其实就是你对整个宏观商业业务的抽象框架,当代表业务逻辑的高层抽象层结构 合理时,你底层的具体实现需要考虑的就仅仅是一些算法和一些具体的业务实现了。当你需要再开发另一个相近的项目时,你以前的抽象层说不定还可以再次利用 呢,面对对象的设计 ......