SQL查询索引优化
建立索引
(一)深入浅出理解索引结构
实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别:
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63 页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。
进一步引申一下,我们可以很容易的
相关文档:
本实例一套人事管理系统:开发工具为VFP9.0、SQL2000、EXCEL;使用了Adobe Photoshop平面设计软件,采用了SPT穿透技术,调用了API函数,实现了对系统时间的统一控制、对DNS的代码控制、对域名解析的应用,等等
晕,怎么上传,(包含源码未编译的)想要的给我发E-MAIL:zhao@tom.com ......
有时, 为了让应用程序运行得更快,所做的全部工作就是在这里或那里做一些很小调整。啊,但关键在于确定如何进行调整!迟早您会遇到这种情况:应用程序中的 SQL 查询不能按照您想要的方式进行响应。它要么不返回数据,要么耗费的时间长得出奇。如果它降低了报告或您的企业应用程序的速度,用户必须等待的时间过长,他们就会 ......
varchar和nvarchar如何选择:
varchar在SQL Server中是采用单字节来存储数据的,nvarchar是使用Unico来存储数据的。中文字符存储到SQL Server中会保存为两个字节(一般采用Unico编码),英文字符保存到数据库中,如果字段的类型为varchar,则只会占用一个字节,而如果字段的类型为nvarchar,则会占用两个字节。虽然使用nva ......
1 --下面的代码生成长度为8的编号,编号以BH开头,其余6位为流水号。
2 --得到新编号的函数
3 CREATE FUNCTION f_NextBH()
4 RETURNS char(8)
5 AS
6 BEGIN
7 RETURN(SELECT 'BH'+RIGHT(1000001+ISNULL(RIGHT(MAX(BH),6),0),6) from tb WITH(XLOCK,PAGLOCK))
8 END
9 GO
10
11 --在表中 ......